Evaluating power grid model hydropower feasibility with a river operations model

Author:

Magee T MORCID,Turner S W DORCID,Clement M A,Oikonomou K,Zagona E AORCID,Voisin NORCID

Abstract

Abstract Production cost models (PCMs) simulate dispatch of generators across a large power grid and are used widely by planners to study the reliability of electricity supply. As energy systems transition away from the thermoelectric technologies that have traditionally balanced electricity supply and demand, hydropower and its representation in PCMs is of increasing importance. A limitation of PCMs applied to continental power grids with diverse generation portfolios is that hydropower generation is simulated without full consideration of complex river dynamics, leading to possible misrepresentation of grid flexibility and performance. In addition, data used in PCMs may reflect outdated operating policies. In this paper we propose a hydropower generation feasibility test for PCMs. The approach uses a detailed hydropower model to determine whether the hourly hydropower schedule from a PCM with simplified monthly parameterization can be attained after accounting for realistic river dynamics and operating policies, such as spill requirements and general water movement and balance through a cascade reservoir system. We perform this hydropower generation test for the ‘Big 10’ hydropower system on the Columbia River (part of the Western Interconnect of the United States), revealing 9% overestimation of available hydropower generation in a PCM solution in an average hydrologic year. Our evaluation provides insight on the cost and opportunities for better representing hydropower in PCMs.

Funder

U.S. Department of Energy Water Power Technologies Office

Battelle for U.S. Department of Energy

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference25 articles.

1. Record of decision; Columbia River system operations environmental impact statement,2020

2. The greater Mekong’s climate‐water‐energy nexus: how ENSO‐triggered regional droughts affect power supply and CO2 emissions;Chowdhury;Earth’s Future,2021

3. Improving hydrogeneration representation in a production cost model used for long-term transmission studies in the Western Interconnection;Dennis,2011

4. Goal programming decision support system for multiobjective operation of reservoir systems;Eschenbach;J. Water Resour. Plan. Manage.,2001

5. Flexible hydropower providing value to renewable energy integration;Harby,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3