Satellite-derived forest canopy greenness shows differential drought vulnerability of secondary forests compared to primary forests in Peru

Author:

Zutta Brian R,Salinas NormaORCID,Cosio Eric GORCID,Tito RichardORCID,Aragón SusanORCID,Nina-Quispe Alex,Roman-Cuesta Rosa MariaORCID

Abstract

Abstract Understanding tropical secondary forest canopy greenness and responses to climatic conditions is important for climate change mitigation, particularly in the tropics where secondary forest growth is a substantial carbon sink and a promoted natural climate solution. We here test three hypotheses: (a) forest canopy greenness is higher in younger, secondary forests than in older, primary or mature forests, (b) secondary forests are more vulnerable to climatic pressures and (c) there are significant differences between forest types regarding primary–secondary canopy greenness and their differential responses to drought anomalies. To explore these relationships, we monitored wet and dry seasonal greenness from 2001 to 2020, estimated through the enhanced vegetation index (EVI), of Peruvian tropical dry, montane and lowland secondary forests and compared it to nearby primary forests. We developed predictive models of seasonal EVI using remotely sensed variables, including land surface temperature (LST), evapotranspiration (ET), potential evapotranspiration (PET), ratio of ET and PET (ETn), and the standard precipitation index (SPI). Overall, there was a higher change in annual and seasonal EVI for secondary forests compared to primary forests. However, primary forests maintained relatively stable EVI levels during the wet season despite drought anomalies. When decoupling forest type canopy greenness and drought response, primary forest greenness in dry and lowland ecosystems were temporally more stable. Secondary montane had a lower increase in greenness when drought anomalies held during different seasons. Stepwise multiple linear regression models indicated that LST and ETn, a plant water use index, were the most significant factors to predict greening fluctuations in dry and montane forest types. ET and SPI mostly drove wet season mean EVI across all forest types. Predictors of dry season mean EVI varied, but mostly including water availability. Our results suggest that tropical secondary forests are more productive overall yet more vulnerable to prolonged drought.

Funder

World Bank

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3