Vegetation disturbances characterization in the Tibetan Plateau from 1986 to 2018 using Landsat time series and field observations

Author:

Wang YanyuORCID,Ma Ziqiang,He Yuhong,Yu Wu,Chang JinfengORCID,Peng Dailiang,Min Xiaoxiao,Guo Hancheng,Xiao Yi,Gao Lingfang,Shi ZhouORCID

Abstract

Abstract Disturbances in vegetated land could dramatically affect the process of vegetation growth and reshape the land cover state. The overall greenup of vegetation on the Tibetan Plateau (TP) has almost served as a consensus to date. However, we still lack consistent acquisitions on the timing, the spatial patterns, and the temporal frequency of vegetation disturbance over the TP, limiting the capacity for planning land management strategies. Therefore, we explored the spatiotemporal pattern and variation of vegetation disturbances across the TP during the past decades and analyzed the disturbance agents. We utilized 37-year Landsat time series images and field observations coupled with a temporal segmentation approach to characterize the spatiotemporal pattern of vegetation disturbances across the TP for the period 1986–2018. The results from this study revealed that 75.71 M ha (accounting for 29.34% of TP’s area) vegetation area underwent at least one disturbance, of which 8.44 M ha area ever experienced large-scale disturbances (disturbance area greater than 0.9 ha and disturbance magnitude (the difference between the spectral value of pre-disturbance and that of post-disturbance) over 0.2). Further, the spatial distributions of these large-scale disturbances varied over time: before 2002, the disturbed sites were evenly distributed over the southeast part of the TP probably induced by overgrazing and unscientific livestock management, while after 2002, most disturbances were concentrated in the south of the Yarlung Tsangpo, mainly caused by anthropogenic activities, such as urban area, roadways, railway, and water control projects. This study presents an effort to characterize vegetation disturbances and their variations over the past decades on the TP, which provides crucial insights toward a complete understanding of vegetation dynamics and its causal relationship with human activities.

Funder

National Natural Science Foundation of China Key Projects

National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research (STEP) program

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3