Coastal wetlands mitigate storm flooding and associated costs in estuaries

Author:

Fairchild Tom PORCID,Bennett William GORCID,Smith GregORCID,Day Brett,Skov Martin WORCID,Möller IrisORCID,Beaumont Nicola,Karunarathna HarshinieORCID,Griffin John NORCID

Abstract

Abstract As storm-driven coastal flooding increases under climate change, wetlands such as saltmarshes are held as a nature-based solution. Yet evidence supporting wetlands’ storm protection role in estuaries—where both waves and upstream surge drive coastal flooding—remains scarce. Here we address this gap using numerical hydrodynamic models within eight contextually diverse estuaries, simulating storms of varying intensity and coupling flood predictions to damage valuation. Saltmarshes reduced flooding across all studied estuaries and particularly for the largest—100 year—storms, for which they mitigated average flood extents by 35% and damages by 37% ($8.4 M). Across all storm scenarios, wetlands delivered mean annual damage savings of $2.7 M per estuary, exceeding annualised values of better studied wetland services such as carbon storage. Spatial decomposition of processes revealed flood mitigation arose from both localised wave attenuation and estuary-scale surge attenuation, with the latter process dominating: mean flood reductions were 17% in the sheltered top third of estuaries, compared to 8% near wave-exposed estuary mouths. Saltmarshes therefore play a generalised role in mitigating storm flooding and associated costs in estuaries via multi-scale processes. Ecosystem service modelling must integrate processes operating across scales or risk grossly underestimating the value of nature-based solutions to the growing threat of storm-driven coastal flooding.

Funder

Natural Environment Research Council

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3