Representation of low-tropospheric temperature inversions in ECMWF reanalyses over Europe

Author:

Palarz Angelika,Luterbacher Jürg,Ustrnul Zbigniew,Xoplaki Elena,Celiński-Mysław Daniel

Abstract

Abstract Despite the fact that tropospheric temperature inversions are thought to be an important feature of climate as well as a significant factor affecting air quality, low-level cloud formation, and the radiation budget of the Earth, a quantitative assessment of their representation in atmospheric reanalyses is yet missing. Here, we provide new evidence of the occurrence of low-tropospheric temperature inversions and associated uncertainties in their parameters existing among reanalyses produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) and upper-air soundings for Europe covering the period 2001–2010. The reanalyses utilized here include (1) surface-input reanalyses represented by ERA-20C and CERA-20C as well as (2) full-input reanalyses represented by ERA-Interim and ERA5. The upper-air soundings were derived from the Integrated Global Radiosonde Archive (IGRA), version 2. The data consists mainly of air temperature and geopotential height from the model levels (ModLev) and pressure levels (PresLev) of ECMWF reanalyses. The results show that the frequency of surface-based inversions (SBI) and elevated inversions (EI) is largely in agreement among the reanalyses. The quality of their representation depends, however, on the inversion type, season, and region. Over the vast majority of IGRA upper-air stations, SBI frequency is overestimated and EI frequency is underestimated by ECMWF reanalyses. Substantially larger uncertainties arise from the selection between the data of ModLev and PresLev of the reanalyses—the differences in the frequency of the temperature inversions are particularly large for summertime SBI suggesting that PresLev are not capable of resolving the main features of shallow and weak SBI.

Funder

German Environmental Foundation, Deutsche Bundesstiftung Umwelt

National Science Centre, Poland

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3