Quantifying vehicle restriction related PM2.5 reduction using field observations in an isolated urban basin

Author:

Guo Yumin,Tian Pengfei,Li Mengqi,Yu Zeren,Song Xin,Shi Jinsen,Chang Yi,Zhang Lei

Abstract

Abstract Vehicle (related particulate matter) emissions, including primary vehicle (related particulate matter) emissions, secondary nitrate, and road dust, have become an important source of fine particulate matter (PM2.5) in many cities across the world. The relationship between vehicle emissions and PM2.5 during vehicle restrictions has not yet been revealed using field observational data. To address this issue, a three-month field campaign on physical and chemical characteristics of PM2.5 at hourly resolution was conducted in Lanzhou, an urban basin with a semi-arid climate. The Lanzhou municipal government implemented more strict vehicle restriction measure during the latter part of field campaign period. The concentration of nitrogen oxides (NO x ) and PM2.5 decreased by 15.6% and 10.6%, respectively during the strict vehicle restriction period. The daily traffic fluxes decreased by 11.8% due to the vehicle restriction measure. The vehicle emission reduction led to a decrease of 2.43 μg·m−3 in PM2.5, including the decrease of primary vehicle emissions, secondary nitrate, and road dust. The contribution of vehicle emissions to PM2.5 decreased by 9.0% based on the results derived from a positive matrix factorization model. The sources other than vehicle emissions increased by 0.2 μg·m−3. Combining all evidence from the observations, the reduction of vehicle emissions is almost equal to the observed reduction in PM2.5. A further extrapolation that 9.0% reduction in vehicle emissions led to the observed reduction in PM2.5 (2.32 μg·m−3). This study clearly quantifies the vehicle restriction related PM2.5 reduction using field observations. The results provide scientific support for the implementation of effective vehicle emission reduction measures.

Funder

National Natural Science Foundation of China

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3