The aridity Index under global warming

Author:

Greve PORCID,Roderick M L,Ukkola A MORCID,Wada YORCID

Abstract

Abstract Aridity is a complex concept that ideally requires a comprehensive assessment of hydroclimatological and hydroecological variables to fully understand anticipated changes. A widely used (offline) impact model to assess projected changes in aridity is the aridity index (AI) (defined as the ratio of potential evaporation to precipitation), summarizing the aridity concept into a single number. Based on the AI, it was shown that aridity will generally increase under conditions of increased CO2 and associated global warming. However, assessing the same climate model output directly suggests a more nuanced response of aridity to global warming, raising the question if the AI provides a good representation of the complex nature of anticipated aridity changes. By systematically comparing projections of the AI against projections for various hydroclimatological and ecohydrological variables, we show that the AI generally provides a rather poor proxy for projected aridity conditions. Direct climate model output is shown to contradict signals of increasing aridity obtained from the AI in at least half of the global land area with robust change. We further show that part of this discrepancy can be related to the parameterization of potential evaporation. Especially the most commonly used potential evaporation model likely leads to an overestimation of future aridity due to incorrect assumptions under increasing atmospheric CO2. Our results show that AI-based approaches do not correctly communicate changes projected by the fully coupled climate models. The solution is to directly analyse the model outputs rather than use a separate offline impact model. We thus urge for a direct and joint assessment of climate model output when assessing future aridity changes rather than using simple index-based impact models that use climate model output as input and are potentially subject to significant biases.

Funder

EUCP (European Climate Prediction System) project

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3