How to ‘downsize’ a complex society: an agent-based modelling approach to assess the resilience of Indus Civilisation settlements to past climate change

Author:

Angourakis AndreasORCID,Bates JenniferORCID,Baudouin Jean-PhilippeORCID,Giesche AlenaORCID,Ustunkaya M CemreORCID,Wright NathanORCID,Singh Ravindra NORCID,Petrie Cameron AORCID

Abstract

Abstract The development, floruit and decline of the urban phase of the Indus Civilisation (c.2600/2500-1900 BC) provide an ideal opportunity to investigate social resilience and transformation in relation to a variable climate. The Indus Civilisation extended over most of the Indus River Basin, which includes a mix of diverse environments conditioned, among other factors, by partially overlapping patterns of winter and summer precipitation. These patterns likely changed towards the end of the urban phase (4.2 ka BP event), increasing aridity. The impact of this change appears to have varied at different cities and between urban and rural contexts. We present a simulation approach using agent-based modelling to address the potential diversity of agricultural strategies adopted by Indus settlements in different socio-ecological scenarios in Haryana, NW India. This is an ongoing initiative that consists of creating a modular model, Indus Village, that assesses the implications of trends in cropping strategies for the sustainability of settlements and the resilience of such strategies under different regimes of precipitation. The model aims to simulate rural settlements structured into farming households, with sub-models representing weather and land systems, food economy, demography, and land use. This model building is being carried out as part of the multi-disciplinary TwoRains project. It brings together research on material culture, settlement distribution, food production and consumption, vegetation and paleoenvironmental conditions.

Funder

McDonald Institute for Archaeological Research

H2020 European Research Council

Department of Science and Technology-UK India Education & Research Initiative

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference76 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3