Coupling agricultural system models with machine learning to facilitate regional predictions of management practices and crop production

Author:

Xiao LiujunORCID,Wang GuochengORCID,Zhou Hangxin,Jin Xiao,Luo ZhongkuiORCID

Abstract

Abstract Process-based agricultural system models are a major tool for assessing climate-agriculture-management interactions. However, their application across large scales is limited by computational cost, model uncertainty, and data availability, hindering policy-making for sustainable agricultural production at the scale meaningful for land management by farmers. Using the Agricultural Production System sIMulator (APSIM) as an example model, the APSIM model was run for 101 years from 1980 to 2080 in a typical cropping region (i.e., the Huang-Huai-Hai plain) of China. Then, machine learning (ML)-based models were trained to emulate the performance of the APSIM model and used to map crop production and soil carbon (which is a key indicator of soil health and quality) dynamics under a great number of nitrogen and water management scenarios. We found that ML-based emulators can accurately and quickly reproduce APSIM predictions of crop yield and soil carbon dynamics across the region under different spatial resolutions, and capture main processes driving APSIM predictions with much less input data. In addition, the emulators can be easily and quickly applied to identify optimal nitrogen management to achieve yield potential and sequester soil carbon across the region. The approach can be used for modelling other complex systems and amplifying the usage of agricultural system models for guiding agricultural management strategies and policy-making to address global environmental challenges from agriculture intensification.

Funder

State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry

Postdoctoral Science Foundation of China

National Natural Science Foundation of China

National key research program of Ministry of Science and Technology of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3