Energy and food security implications of transitioning synthetic nitrogen fertilizers to net-zero emissions

Author:

Rosa LorenzoORCID,Gabrielli PaoloORCID

Abstract

Abstract By synthetically producing nitrogen fertilizers from ammonia (NH3), the Haber–Bosch process has been feeding humanity for more than one hundred years. However, current NH3 production relies on fossil fuels, and is energy and carbon intensive. This commits humanity to emissions levels not compatible with climate goals and commits agricultural production to fossil fuels dependency. Here, we quantify food and energy implications of transitioning nitrogen fertilizers to net-zero CO2 emissions. We find that 1.07 billion people are fed from food produced from imported nitrogen fertilizers. An additional 710 million people are fed from imported natural gas feedstocks used for fertilizers production, meaning that 1.78 billion people per year are fed from imports of either fertilizers or natural gas. These findings highlight the reliance of global food production on trading and fossil fuels, hence its vulnerability to supply and energy shocks. However, alternative routes to achieve net-zero emissions in NH3 production exist, which are based on carbon capture and storage, electrification, and biomass. These routes comply with climate targets while mitigating the risks associated with food security. Yet, they require more land, energy, and water than business-as-usual production, exacerbating land and water scarcity and the use of limited natural resources. Transitioning fertilizers to net-zero emissions can contribute to climate and food security goals, although water, land, and energy trade-offs should be considered.

Funder

ClimateWorks Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3