Abstract
Abstract
The stability of permafrost is of fundamental importance to socio-economic well-being and ecological services, involving broad impacts to hydrological cycling, global budgets of greenhouse gases and infrastructure safety. This study presents a biophysical permafrost zonation map that uses a rule-based geographic information system (GIS) model integrating global climate and ecological datasets to classify and map permafrost regions (totaling 19.76 × 106 km2, excluding glaciers and lakes) in the Northern Hemisphere into five types: climate-driven (CD) (19% of area), CD/ecosystem-modified (41%), CD/ecosystem protected (3%), ecosystem-driven (29%), and ecosystem-protected (8%). Overall, 81% of the permafrost regions in the Northern Hemisphere are modified, driven, or protected by ecosystems, indicating the dominant role of ecosystems in permafrost stability in the Northern Hemisphere. Permafrost driven solely by climate occupies 19% of permafrost regions, mainly in High Arctic and high mountains areas, such as the Qinghai–Tibet Plateau. This highlights the importance of reducing ecosystem disturbances (natural and human activity) to help slow permafrost degradation and lower the related risks from a warming climate.
Funder
U.S. National Science Foundation
Strategic Priority Research Program of the Chinese Academy of Sciences
National Natural Science Foundation of China
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献