Sectoral water use responses to droughts and heatwaves: analyses from local to global scales for 1990–2019

Author:

Cárdenas Belleza Gabriel AORCID,Bierkens Marc F PORCID,van Vliet Michelle T HORCID

Abstract

Abstract Water use for various sectors (e.g. irrigation, livestock, domestic, energy and manufacturing) is increasing due to a growing global population and economic development. Additionally, increases in frequency and severity of droughts, heatwaves and compound drought-heatwave events, also lead to responses in sectoral water use and a reduction in water availability, intensifying water scarcity. However, limited knowledge exists on the responses in sectoral water use during these hydroclimatic extremes. In this study we quantify the impacts of droughts, heatwaves and compound events on water use of irrigation, livestock, domestic, energy and manufacturing sectors at global, country and local scales. To achieve this, datasets of reported and downscaled sectoral water use (i.e. withdrawal and consumption) were evaluated during these hydroclimatic extremes and compared to normal (non-extreme) periods for 1990–2019. Our analysis shows that these hydroclimatic extremes affect water use patterns differently per sector and region. Reported data show that domestic and irrigation water use increases during heatwaves in Eastern Europe and central continental United States, while water use decreases for thermoelectric sector, particularly in Europe while it increases in north and Eastern Asia. Additionally, global water use response patterns reveal that irrigation and domestic sectors are mostly prioritized over livestock, thermoelectric and manufacturing. Reported local-scale data reveal that for most sectors and regions/locations, stronger water use responses are found for heatwaves and compound events compared to impacts during hydrological droughts. Our outcomes provide improved understanding of sectoral water use behaviour under hydroclimatic extremes. Nonetheless, given the future threats to water availability and the limited accessible information of water use, there is an urgency to collect more monitored-driven data of sectoral water use for improved assessments of water scarcity under these extremes. Consequently, this research reveals the necessity of more realistic water use models to better represent the sectoral responses to hydroclimatic extremes.

Funder

Netherlands Scientific Organisation

European Union

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference77 articles.

1. Heatwave sees increased water consumption—ABC News,2009

2. A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes;Alizadeh;Sci. Adv.,2020

3. Water shortages worsened by reservoir effects;Baldassarre;Nat. Sustain.,2018

4. Drought, inefficiency lead to major power shortage in Iran—Al-monitor: independent, trusted coverage of the middle East;Bizaer,2018

5. Reassessing the projections of the world water development report;Boretti;npj Clean Water,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3