A scalable crop yield estimation framework based on remote sensing of solar-induced chlorophyll fluorescence (SIF)

Author:

Kira OzORCID,Wen Jiaming,Han Jimei,McDonald Andrew J,Barrett Christopher BORCID,Ortiz-Bobea ArielORCID,Liu Yanyan,You Liangzhi,Mueller Nathaniel D,Sun YingORCID

Abstract

Abstract Projected increases in food demand driven by population growth coupled with heightened agricultural vulnerability to climate change jointly pose severe threats to global food security in the coming decades, especially for developing nations. By providing real-time and low-cost observations, satellite remote sensing has been widely employed to estimate crop yield across various scales. Most such efforts are based on statistical approaches that require large amounts of ground measurements for model training/calibration, which may be challenging to obtain on a large scale in developing countries that are most food-insecure and climate-vulnerable. In this paper, we develop a generalizable framework that is mechanism-guided and practically parsimonious for crop yield estimation. We then apply this framework to estimate crop yield for two crops (corn and wheat) in two contrasting regions, the US Corn Belt US-CB, and India’s Indo–Gangetic plain Wheat Belt IGP-WB, respectively. This framework is based on the mechanistic light reactions (MLR) model utilizing remotely sensed solar-induced chlorophyll fluorescence (SIF) as a major input. We compared the performance of MLR to two commonly used machine learning (ML) algorithms: artificial neural network and random forest. We found that MLR-SIF has comparable performance to ML algorithms in US-CB, where abundant and high-quality ground measurements of crop yield are routinely available (for model calibration). In IGP-WB, MLR-SIF significantly outperforms ML algorithms. These results demonstrate the potential advantage of MLR-SIF for yield estimation in developing countries where ground truth data is limited in quantity and quality. In addition, high-resolution and crop-specific satellite SIF is crucial for accurate yield estimation. Therefore, harnessing the mechanism-guided MLR-SIF and rapidly growing satellite SIF measurements (with high resolution and crop-specificity) hold promise to enhance food security in developing countries towards more effective responses to food crises, agricultural policies, and more efficient commodity pricing.

Funder

USAID

USDA

NASA

Cornell Initiative for Digital Agriculture

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3