Machine learning to optimize climate projection over China with multi-model ensemble simulations

Author:

Li Tong,Jiang Zhihong,Treut Hervé Le,Li Laurent,Zhao Lilong,Ge Lingling

Abstract

Abstract The multi-model ensemble approach is generally considered as the best way to explore the advantage and to avoid the weakness of each individual model, and ultimately to achieve the best climate projection. But the design of an optimal strategy and its practical implementation still constitutes a challenge. Here we use the random forest (RF) algorithm (from the category of machine learning) to explore the information offered by the multi-model ensemble simulations within the Coupled Model Intercomparison Project Phase 6. Our objective is to achieve a more reliable climate projection (mean climate and extremes) over China. RF is furthermore compared to two other ensemble-processing strategies of different nature, one is the basic arithmetic mean (AM), and another is the linear regression across the ensemble members. Our results indicate that RF effectively enhances the capability in capturing spatial climate characteristics. Regions with complex topography, such as the Tibetan Plateau and its periphery, show the most significant improvements. RF projects less future warming but enhanced wet conditions across China. It also produces larger spatial variability and more small-scale features. The most obvious increase of precipitation is in the northern part and the periphery of the Tibetan Plateau. The projected changes in RF for strong precipitation are almost twice higher than in AM, while in the northwestern area, weaker increases of precipitation are projected by RF, which indicates larger spatial inhomogeneity of its projection.

Funder

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3