Abstract
Abstract
Cryospheric long-term timeseries get increasingly important. To document climate-related effects on long-term viscous creep of ice-rich mountain permafrost, we investigated timeseries (1995–2022) of geodetically-derived Rock Glacier Velocity (RGV), i.e. spatially averaged interannual velocity timeseries related to a rock glacier (RG) unit or part of it. We considered 50 RGV from 43 RGs spatially covering the entire European Alps. Eight of these RGs are destabilized. Results show that RGV are distinctly variable ranging from 0.04 to 6.23 m a−1. Acceleration and deceleration at many RGs are highly correlated with similar behaviour over 2.5 decades for 15 timeseries. In addition to a general long-term, warming-induced trend of increasing velocities, three main phases of distinct acceleration (2000–2004, 2008–2015, 2018–2020), interrupted by deceleration or steady state conditions, were identified. The evolution is attributed to climate forcing and underlines the significance of RGV as a product of the Essential Climate Variable (ECV) permafrost. We show that RGV data are valuable as climate indicators, but such data should always be assessed critically considering changing local factors (geomorphic, thermal, hydrologic) and monitoring approaches. To extract a climate signal, larger RGV ensembles should be analysed. Criteria for selecting new RGV-sites are proposed.
Funder
University of Graz
Swiss Permafrost Monitoring Network PERMOS
Reference87 articles.
1. Creep of mountain permafrost: internal structure and flow of alpine rock glaciers;Haeberli;Hydrol. Glaziol. ETH Zurich,1985
2. Permafrost creep and rock glacier dynamics;Haeberli;Permafr. Periglac. Process.,2006
3. A general theory of rock glacier creep based on in-situ and remote sensing observations;Cicoira;Permafr. Periglac. Process.,2020
4. Towards standard guidelines for inventorying rock glaciers: baseline concepts (version 4.2.2);RGIK,2022a
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献