Can climate knowledge enable Warragamba Dam, Sydney, Australia to be used to manage flood risk?

Author:

Devanand AnjanaORCID,Pitman Andy JORCID,Carvajal Guido,Khan Stuart J

Abstract

Abstract Dams that serve a dual purpose of water supply and flood mitigation operate to maintain a defined full supply level of water that balances the two conflicting requirements. To optimize the use of available storage space, the full supply level may be adjusted to reflect changing risks of future water shortages and future flood inflows based on known seasonal variations and current observations. The Warragamba Dam in eastern Australia is located upstream of the populated Hawkesbury-Nepean valley which has one of the largest flood exposures in the country. However, the operating protocol of the reservoir does not include provisions to reduce the full supply level of the dam for flood mitigation. Large scale climate indicators that are known to influence the hydroclimate of this region may potentially contain useful information to inform the dual use of this reservoir, but their utility for this purpose has not been studied. Here we explore whether current observations of large-scale climate along with antecedent catchment conditions can be used to estimate the probability of large inflows into the reservoir in the next 3- and 6 months, to aid flood management. We find that the predictors have a substantial influence on the probability of large inflows. The probability differences during opposite predictor phases vary by season and range from 30% to 70%. Our results indicate that considering current climate information to inform dual use of the Warragamba dam has merit.

Funder

ARC Centre of Excellence for Climate Extremes

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3