Mapping the expansion of berry greenhouses onto Michoacán’s ejido lands, México

Author:

Hartman SarahORCID,Farfán MichelleORCID,Hoogesteger JaimeORCID,D’Odorico PaoloORCID

Abstract

Abstract Agricultural transformations have significantly contributed to the global market’s year-round supply of capital-intensive greenhouse-grown crops. For instance, berry production in México is increasingly relying on greenhouse systems to meet the growing demand of international markets, particularly in the USA. It is still unclear to what extent these transformations are related to land tenure, as data on greenhouse distribution often do not exist, are incomplete, or lack spatial resolution. This paper presents a support vector machine learning algorithm tool to map greenhouse expansion using satellite images. The tool is applied to the major berry-growing region of Michoacán, México. Here agricultural areas are transforming to satisfy foreign demand for berries, altering local land and water resource use patterns. We use this tool and a unique land tenure dataset to investigate (a) the spatially explicit extent to which high-input commercial agriculture (mainly the production of berries) has expanded in this region since 1989; and (b) the extent to which smallholder (ejidal) land has been incorporated into the highly capitalized agro-export sector. We combine a national dataset on ejidal land (which includes both communal and parcel land) with geospatial agricultural data to quantify the land-use changes in six municipalities in the berry-growing region of Michoacán between 1989 and 2021. We find that the development of the greenhouse berry boom can be quantified and shown with spatially-explicit detail, growing from zero to over 9,500 ha over the period, using almost one-quarter of all regional agricultural land in 2020. We further find that the capital-intensive market-oriented berry industry has been widely integrated into smallholder ejidal lands, so much so that over half of greenhouses are found there.

Funder

Berkeley Institute for International Studies Pre-Dissertation Research Grant

USDA Hatch Multistate

National Science Foundation INFEWS Fellowship

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference58 articles.

1. Object-based greenhouse horticultural crop identification from multi-temporal satellite imagery: a case study in Almeria, Spain;Aguilar;Remote Sens.,2015

2. Policy responses to the closure of water resources: regional and global issues;Allan,1996

3. Zamora before the strawberry boom [translated title];Alvarez del Toro;Relaciones,1985

4. Land tenure and tenure regimes in Mexico: an overview;Assies;J. Agrar. Change,2008

5. The Agrarian Reform and changes in ejidal land use in Aguascalientes, 1983–2013 [translated title];Beraud-Macías;Agric. Soc. Desarro.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3