Amphibian collapses increased malaria incidence in Central America *

Author:

Springborn Michael RORCID,Weill Joakim AORCID,Lips Karen RORCID,Ibáñez RobertoORCID,Ghosh AniruddhaORCID

Abstract

Abstract Biodiversity in ecosystems plays an important role in supporting human welfare, including regulating the transmission of infectious diseases. Many of these services are not fully-appreciated due to complex environmental dynamics and lack of baseline data. Multicontinental amphibian decline due to the fungal pathogen Batrachochytrium dendrobatidis (Bd) provides a stark example. Even though amphibians are known to affect natural food webs—including mosquitoes that transmit human diseases—the human health impacts connected to their massive decline have received little attention. Here we leverage a unique ensemble of ecological surveys, satellite data, and newly digitized public health records to show an empirical link between a wave of Bd-driven collapse of amphibians in Costa Rica and Panama and increased human malaria incidence. Subsequent to the estimated date of Bd-driven amphibian decline in each ‘county’ (canton or distrito), we find that malaria cases are significantly elevated for several years. For the six year peak of the estimated effect, the annual expected county-level increase in malaria ranges from 0.76 to 1.1 additional cases per 1000 population. This is a substantial increase given that cases country-wide per 1000 population peaked during the timeframe of our study at approximately 1.5 for Costa Rica and 1.1 for Panama. This previously unidentified impact of biodiversity loss illustrates the often hidden human welfare costs of conservation failures. These findings also show the importance of mitigating international trade-driven spread of similar emergent pathogens like Batrachochytrium salamandrivorans.

Funder

University of California Davis’ John Muir Institute of the Environment

Panama Amphibian Rescue and Conservation Project, and Minera Panama

Division of Environmental Biology

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3