Beyond SOx reductions from shipping: assessing the impact of NOx and carbonaceous-particle controls on human health and climate

Author:

Bilsback Kelsey RORCID,Kerry DeannaORCID,Croft BettyORCID,Ford BonneORCID,Jathar Shantanu HORCID,Carter EllisonORCID,Martin Randall VORCID,Pierce Jeffrey RORCID

Abstract

Abstract Historically, cargo ships have been powered by low-grade fossil fuels, which emit particles and particle-precursor vapors that impact human health and climate. We used a global chemical-transport model with online aerosol microphysics (GEOS-Chem-TOMAS) to estimate the aerosol health and climate impacts of four emission-control policies: (1) 85% reduction in sulfur oxide (SOx) emissions (Sulf); (2) 85% reduction in SOx and black carbon (BC) emissions (Sulf-BC); (3) 85% reduction in SOx, BC, and organic aerosol (OA) emissions (Sulf-BC-OA); and (4) 85% reduction in SOx, BC, OA, and nitrogen oxide (NOx) emissions (Sulf-BC-OA-NOx). The SOx reductions reflect the 0.5% fuel-sulfur cap implemented by the International Maritime Organization (IMO) on 1 January 2020. The other reductions represent realistic estimates of future emission-control policies. We estimate that these policies could reduce fine particulate matter (PM2.5)-attributable mortalities by 13 300 (Sulf) to 38 600 (Sulf-BC-OA-NOx) mortalities per year. These changes represent 0.3% and 0.8%, respectively, of annual PM2.5-attributable mortalities from anthropogenic sources. Comparing simulations, we estimate that adding the NOx cap has the greatest health benefit. In contrast to the health benefits, all scenarios lead to a simulated climate warming tendency. The combined aerosol direct radiative effect and cloud-albedo indirect effects (AIE) are between 27 mW m−2 (Sulf) and 41 mW m−2 (Sulf-BC-OA-NOx). These changes are about 2.1% (Sulf) to 3.2% (Sulf-BC-OA-NOx) of the total anthropogenic aerosol radiative forcing. The emission control policies examined here yield larger relative changes in the aerosol radiative forcing (2.1%–3.2%) than in health effects (0.3%–0.8%), because most shipping emissions are distant from populated regions. Valuation of the impacts suggests that these emissions reductions could produce much larger marginal health benefits ($129–$374 billion annually) than the marginal climate costs ($12–$17 billion annually).

Funder

Monfort Excellence Fund

Ocean Frontier Institute

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference62 articles.

1. Predicting global aerosol size distributions in general circulation models;Adams;J. Geophys. Res.,2002

2. Needs and opportunities to reduce black carbon emissions from maritime shipping;Azzara,2015

3. Feasibility of IMO Annex VI Tier III implementation using selective catalytic reduction;Azzara,2014

4. Dataset associated with "Beyond SOx reductions from shipping: Assessing the impact of NOx and carbonaceous-particle controls on human health and climate.";Bilsback,2020

5. Absorption and Scattering of Light by Small Particles

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3