Soil microbial respiration adapts to higher and longer warming experiments at the global scale

Author:

Yang Lu,Pan Junxiao,Wang Jinsong,Tian Dashuan,Zhang Chunyu,Zhao Xiuhai,Hu Jian,Yang Wen,Yan Yingjie,Ma Fangfang,Chen Weinan,Quan Quan,Wang Peiyan,Niu Shuli

Abstract

Abstract Warming can affect soil microbial respiration by changing microbial biomass and community composition. The responses of soil microbial respiration to warming under experimental conditions are also related to background conditions and the experimental setup, such as warming magnitude, duration, and methods. However, the global pattern of soil microbial respiration in response to warming and underlying mechanisms remain unclear. Here, we conducted a global meta-analysis of the response of soil microbial respiration to warming by synthesizing data from 187 field experiments. We found that experimental warming significantly increased soil microbial respiration and microbial biomass carbon by 11.8% and 6.4%, respectively. The warming-induced increase in microbial carbon decomposition was positively correlated with increased microbial biomass carbon, but not community composition. Moreover, the positive response of soil microbial respiration marginally increased with warming magnitude, particularly in short-term experiments, but soil microbial respiration adapted to higher warming at longer timescales. Warming method did not significantly affect the response of microbial respiration, except for a significant effect with open top chamber warming. In addition, the impact of warming on soil microbial respiration was more pronounced in wetter sites and in sites with lower soil pH and higher soil organic carbon. Our findings suggest that warming stimulates microbial respiration mainly by increasing microbial biomass carbon. We also highlight the importance of the combination of warming magnitude and duration in regulating soil microbial respiration responses, and the dependence of warming effects upon background precipitation and soil conditions. These findings can advance our understanding of soil carbon losses and carbon-climate feedbacks in a warm world.

Funder

the Strategic Priority Research Program of Chinese Academy of Sciences

the “Kezhen-Bingwei” Young Talents

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference68 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3