Abstract
Abstract
The urban turbidity island (UTI) effect is an important research topic in urban climate studies. It is closely related to urban visibility and the health of urban residents; however, it has received little attention in previous research. This study analyzes the temporal and spatial distribution characteristics of the UTI effect through the combined use of satellite remote sensing and ground observation data. Specifically, absolute and relative urban turbidity island intensity (UTII_A and UTII_R) indices are proposed and calculated for 2000–2020 by using aerosol data products and atmospheric fine particle mass concentration inversion products, which are represented by aerosol optical depth (AOD), PM1, PM2.5, and PM10. The results show the following: (a) there has been a clear footprint of the UTI effect in Beijing since 2000, generally consistent with trends of urban sprawl; (b) there are great differences in the interannual distribution of AOD, normalized AOD and PM values in urban and suburban areas; and (c) there are seasonal differences in the UTI distribution and air pollutant concentrations. The differences among indices between urban and suburban areas are mainly caused by heat island-induced air convection, complex structures in urban areas and regional weather conditions. Importantly, the interannual distribution of AOD and UTII_A of PM values decreased from 2014 to 2020, indicating that the government’s air pollution control policy has significantly improved air quality. Analysis from this study could support the formulation of urban planning and control policies to guide human activities.
Funder
The Fundamental Research Funds for the Central Universities
Fengyun III Satellite Ground Application Project of Chinese Meteorological Administration
National Key Research and Development Project of China
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献