Projected changes in early summer ridging and drought over the Central Plains

Author:

Cook Benjamin I,Williams A Park,Marvel Kate

Abstract

Abstract Early summer (May–June–July; MJJ) droughts over the Central Plains are often caused by atmospheric ridging, but it is uncertain if these events will increase in frequency or if their influence on drought severity will change in a warming world. Here, we use tree-ring based reconstructions (1500–2020 CE) of MJJ ridging and 0–200 cm soil moisture with six CMIP6 model ensembles to investigate the response of Central Plains drought dynamics to a moderate warming scenario (SSP2-4.5). By the end of the 21st century (2071–2100), precipitation increases in most models during the preceding months (February–March–April), especially over the northern part of the Central Plains, while changes during MJJ are non-robust. By contrast, vapor pressure deficit increases strongly in all models, resulting in five of the six models projecting robust median soil moisture drying and all six models projecting more rapid seasonal soil moisture declines during the transition into the summer. Major ridging events increase in frequency in some models, and there is strong agreement across all models that when ridging events do occur, they will cause more severe soil moisture drought and seasonal drying at the end of the 21st century. The median multi-model response also indicates, by the end of the 21st century, that the Central Plains will experience a three-fold increase in the risk of drought events equivalent to the most extreme droughts of the last 500 years. Our results demonstrate that even moderate warming is likely to increase early summer soil moisture drought severity and risk over the Central Plains, even in the absence of robust precipitation declines, and that drought responses to major atmospheric ridging events will be significantly stronger.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3