Abstract
Abstract
Integrated management of food–energy–water systems (FEWS) requires a unified, flexible and reproducible approach to incorporate the interdependence between sectors, and include the risk of non-stationary environmental variations due to climate change. Most of the recently developed methods in the literature fall short of one or more aspects in such integration. In this article, we propose a novel approach based upon fundamentals of decision theory and reinforcement learning that (1) quantifies and propagates uncertainty, (2) incorporates resource interdependence, (3) includes the impact of uncontrolled variables such as climate variations, and (4) adaptively optimizes management decisions to minimize the costs and environmental impacts of crop production. Moreover, the proposed method is robust to problem-specific complexities and is easily reproducible. We illustrate the framework on a real-world case study in Ventura County, California.
Funder
National Science Foundation
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献