Chesapeake legacies: the importance of legacy nitrogen to improving Chesapeake Bay water quality

Author:

Chang S Y,Zhang QORCID,Byrnes D K,Basu N B,Van Meter K JORCID

Abstract

Abstract In the Chesapeake Bay, excess nitrogen (N) from both landscape and atmospheric sources has for decades fueled algal growth, disrupted aquatic ecosystems, and negatively impacted coastal economies. Since the 1980s, Chesapeake Bay Program partners have worked to implement a wide range of measures across the region—from the upgrading of wastewater treatment plants to implementation of farm-level best management practices—to reduce N fluxes to the Bay. Despite widespread implementation of such measures and notable reductions in N inputs, water quality across the region has been slow to improve. Such lack of response has in some cases been attributed to N legacies—accumulations of surplus N in soils and groundwater—that can contribute to time lags between implementation of conservation measures and improvements in water quality. Here, we use the ELEMeNT-N modeling framework to explore the role of legacy N in slowing reductions in N loading to the Bay, and to provide estimates of the time required to meet water quality goals in nine major tributary watersheds. Our results first show that recent improvements in water quality can be attributed to decreases in N surplus magnitudes that began to occur in the 1970s and 1980s, and that such improvements will continue in the coming decades. Future simulations suggest that, even with no additional changes in current management practices, goals to reduce N loads across the region by 25% can nearly be met within the next two decades. The present results also suggest that time lags to achieving water quality may vary considerably in the individual study watersheds, with the longest lag times being found in the highly agricultural Choptank watershed, where N surplus magnitudes remain high and where legacy N remains a major control on water quality.

Funder

Natural Sciences and Engineering Research Council of Canada

Startup Funds, University of Illinois at Chicago

Joint Programming Initiative Water challenges for a changing world

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference80 articles.

1. Factors driving nutrient trends in streams of the Chesapeake Bay Watershed;Ator;J. Environ. Qual.,2020

2. Toward explaining nitrogen and phosphorus trends in Chesapeake Bay Tributaries, 1992–2012;Ator;J. Am. Water Resour. Assoc.,2019

3. Ground-water discharge and base flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay watershed, Middle Atlantic Coast: US geological survey water-resources investigations report 98–4059;Bachman,1998

4. Evaluation of analytical and numerical approaches for the estimation of groundwater travel time distribution;Basu;J. Hydrol.,2012

5. Barriers and bridges in abating coastal eutrophication;Boesch;Front. Mar. Sci.,2019

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3