Traffic-related sources may dominate urban water contamination for many organic contaminants

Author:

Awonaike Boluwatife,Parajulee AbhaORCID,Lei Ying Duan,Wania FrankORCID

Abstract

Abstract Urban runoff and wastewater/sewage input are majorly responsible for the contamination of urban streams. In streams where wastewater input is not a considerable input, the importance of urban runoff as a mechanism of contaminant transport and delivery from urban surfaces to receiving waters is even more apparent. Extensive studies on two such streams in Southern Ontario, Canada yielded data on the occurrence and levels of multiple contaminant groups (polycyclic aromatic hydrocarbons and quinones, benzotriazoles (BTs), BT ultraviolet stabilizers, organophosphate esters, herbicides) and the influence of factors such as temperature, rainfall characteristics, and land use. Here, we collectively examined the data from these studies to identify any trends and further insights. Using concentration-discharge relationships, we found that the transport dynamics of many particle-bound compounds are strikingly similar to each other, and to that of suspended solids in which they were quantified, suggesting a single, predominant source. Similar urban to rural ratios across compound groups and strong correlations with road density further support the existence of a dominant source and point to traffic as this source, respectively. Although road traffic had not previously been implicated as a major source of many of the investigated compound groups, their uses suggest that traffic-related sources are very plausible. Overall, this work highlights that traffic is a major source of a surprisingly wide array of organic contaminants to urban surfaces, and subsequently to nearby streams.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3