Coal transitions—part 2: phase-out dynamics in global long-term mitigation scenarios

Author:

Minx Jan CORCID,Hilaire JeromeORCID,Müller-Hansen FinnORCID,Nemet GregoryORCID,Diluiso FrancescaORCID,Andrew Robbie MORCID,Ayas CerenORCID,Bauer NicoORCID,Bi Stephen LORCID,Clarke Leon,Creutzig FelixORCID,Cui Ryna YiyunORCID,Jotzo Frank,Kalkuhl MatthiasORCID,Lamb William FORCID,Löschel AndreasORCID,Manych NiccolòORCID,Meinshausen MalteORCID,Oei Pao-YuORCID,Peters Glen PORCID,Sovacool BenjaminORCID,Steckel Jan CORCID,Thomas Sebastian,Workman AnnabelleORCID,Wiseman JohnORCID

Abstract

Abstract A rapid phase-out of unabated coal use is essential to limit global warming to below 2 °C. This review presents a comprehensive assessment of coal transitions in mitigation scenarios consistent with the Paris Agreement, using data from more than 1500 publicly available scenarios generated by more than 30 integrated assessment models. Our ensemble analysis uses clustering techniques to categorize coal transition pathways in models and bridges evidence on technological learning and innovation with historical data of energy systems. Six key findings emerge: First, we identify three archetypal coal transitions within Paris-consistent mitigation pathways. About 38% of scenarios are ‘coal phase out’ trajectories and rapidly reduce coal consumption to near zero. ‘Coal persistence’ pathways (42%) reduce coal consumption much more gradually and incompletely. The remaining 20% follow ‘coal resurgence’ pathways, characterized by increased coal consumption in the second half of the century. Second, coal persistence and resurgence archetypes rely on the widespread availability and rapid scale-up of carbon capture and storage technology (CCS). Third, coal-transition archetypes spread across all levels of climate policy ambition and scenario cycles, reflecting their dependence on model structures and assumptions. Fourth, most baseline scenarios—including the shared socio-economic pathways (SSPs)—show much higher coal dependency compared to historical observations over the last 60 years. Fifth, coal-transition scenarios consistently incorporate very optimistic assumptions about the cost and scalability of CCS technologies, while being pessimistic about the cost and scalability of renewable energy technologies. Sixth, evaluation against coal-dependent baseline scenarios suggests that many mitigation scenarios overestimate the technical difficulty and costs of coal phase-outs. To improve future research, we recommend using up-to-date cost data and evidence about innovation and diffusion dynamics of different groups of zero or low-carbon technologies. Revised SSP quantifications need to incorporate projected technology learning and consistent cost structures, while reflecting recent trends in coal consumption.

Funder

Bundesministerium fìr Bildung und Forschung

European Research Council

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3