Optimizing sowing window and cultivar choice can boost China’s maize yield under 1.5 °C and 2 °C global warming

Author:

Huang MingxiaORCID,Wang JingORCID,Wang BinORCID,Liu De Li,Yu Qiang,He Di,Wang Na,Pan XuebiaoORCID

Abstract

Abstract Climate change, with increased temperatures and varied rainfall, poses a great challenge to food security around the world. Appropriately assessing the impacts of climate change on crop productivity and understanding the adaptation potential of agriculture to climate change are urgently needed to help develop effective strategies for future agriculture and to maintain food security. In this study, we studied future maize yield changes under 1.5 °C (2018–2037) and 2 °C (2044–2063) warming scenarios and investigated the adaptation potential across China’s Maize Belt by optimizing the sowing date and cultivar using the APSIM-Maize model. In comparison to the baseline scenario, under the 1.5 °C and 2 °C warming scenarios, we found that without adaptation, maize yields would increase in the relatively cool regions with a single-cropping system but decrease in other regions. However, in comparison with the baseline scenario, under the 1.5 °C and 2 °C warming scenarios with adaptation, maize yields would increase by 11.1%–53.9% across the study area. Across the maize belt, compared with the baseline scenario, under warming of 1.5 °C, the potential sowing window would increase by 2–17 d, and under warming of 2 °C, this sowing window would increase by 4–26 d. The optimal sowing window would also be significantly extended in the regions with single-cropping systems by an average of 10 d under the 1.5 °C warming scenario and 12 d under the 2 °C warming scenario. Late-maturing cultivar achieved higher yield than early-middle maturing cultivars in all regions except the north part of Northeast China. Adjusting the sowing date by increasing growth-period precipitation contributed more (44.5%–96.7%) to yield improvements than shifting cultivars (0%–50.8%) and climate change (−53.1% to 23.0%) across all maize planting regions except in the wet southwestern parts of the maize belt. The differences among the maize planting regions in terms of high adaptation potential provide invaluable information for policymakers and stakeholders of maize production to set out optimized agricultural strategies to safeguard the supply of maize.

Funder

National Key Research and Development Program of China

CMA/Henan Key Laboratory of Agrometeorological Support and Applied Technique

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3