The evolving roles of intensity and wet season timing in rainfall regimes surrounding the Red Sea

Author:

Haleakala KaydenORCID,Yue HaowenORCID,Alam Sarfaraz,Mitra Rouhin,Bushara Ageel I,Gebremichael Mekonnen

Abstract

Abstract The Red Sea is surrounded by a diverse mixture of climates and is spanned by opposite hydrologic end-uses and geopolitical states. Unique water supply management challenges on both sides (related to agricultural and trans-boundary conflict in East Africa, and to groundwater depletion in the Arabian Peninsula) are made more severe by a rising demand, which underscores the importance of understanding shifts in rainfall supply to aid effective action. In this study, we characterize the relative importance of rainfall intensities to annual rainfall, the onset and duration of wet seasons, and the (statistically significant) trends in each of these over the region from 1981 through 2020 using daily gridded (0.05°) precipitation estimates. Results show that heavy rainfall (above 20 mm d−1) does not necessarily benefit annual totals, as the wettest regions are shaped by moderate (between 5 and 20 mm d−1) rainfall coupled with prolonged wet seasons. Observed trends in annual rainfall are underlain by interactions between shifting wet season lengths and rainfall intensities. Wet season length increases for 26% of the region, dampening the inherent drying resulting from shifts toward less-intense rainfall, and bolstering the inherent wetting from shifts toward more-intense rainfall. Regions shifting toward less- (more-)intense rainfall without an expanding wet season generally show negative (insignificant) rainfall trends. This reveals an important control that wet-day frequency has over wet-day intensity alone in shaping annual rainfall changes. We emphasize that the large-scale distribution of these shifts and their regional importance should punctuate cooperative efforts in sustainable resource management and transboundary governance.

Funder

NASA Precipitation Measurement Mission

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3