Air pollution mortality from India’s coal power plants: unit-level estimates for targeted policy

Author:

Singh KiratORCID,Peshin TapasORCID,Sengupta ShayakORCID,Thakrar Sumil KORCID,Tessum Christopher WORCID,Hill Jason DORCID,Azevedo Inês M LORCID,Luby Stephen PORCID

Abstract

Abstract Air pollution from coal-fired electricity generation is an important cause of premature mortality in India. Although pollution-related mortality from the sector has been extensively studied, the relative contribution of individual coal-fired units to the fleet-wide mortality burden remains unclear. Here, we find that emissions from a small number of units drive overall mortality. Units producing just 3.5% of total generation and constituting less than 3% of total capacity result in 25% of annual premature mortality from coal-fired generation. This is a direct consequence of the 200-fold variation that we find in the mortality intensity of electricity generation across units. We use a detailed emissions inventory, a reduced complexity air quality model, and non-linear PM2.5 concentration-response functions to estimate marginal premature mortality for over 500 units operational in 2019. Absolute annual mortality ranges from less than 1 to over 650 deaths/year across units, and the mortality intensity of generation varies from under 0.002 to 0.43 deaths/GWh. Our findings suggest the potential for large social benefits in the form of reduced PM2.5-related premature mortality in India if the highest mortality intensity units are prioritized for the implementation of pollution control technologies or accelerated retirement.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3