Tipping point in North American Arctic-Boreal carbon sink persists in new generation Earth system models despite reduced uncertainty

Author:

Braghiere Renato KORCID,Fisher Joshua BORCID,Miner Kimberley RORCID,Miller Charles EORCID,Worden John RORCID,Schimel David SORCID,Frankenberg ChristianORCID

Abstract

Abstract Estimating the impacts of climate change on the global carbon cycle relies on projections from Earth system models (ESMs). While ESMs currently project large warming in the high northern latitudes, the magnitude and sign of the future carbon balance of Arctic-Boreal ecosystems are highly uncertain. The new generation of increased complexity ESMs in the Intergovernmental Panel on Climate Change Sixth Assessment Report (IPCC AR6) is intended to improve future climate projections. Here, we benchmark the Coupled Model Intercomparison Project (CMIP) 5 and 6 (8 CMIP5 members and 12 CMIP6 members) with the International Land Model Benchmarking (ILAMB) tool over the region of NASA’s Arctic-Boreal vulnerability experiment (ABoVE) in North America. We show that the projected average net biome production (NBP) in 2100 from CMIP6 is higher than that from CMIP5 in the ABoVE domain, despite the model spread being slightly narrower. Overall, CMIP6 shows better agreement with contemporary observed carbon cycle variables (photosynthesis, respiration, biomass) than CMIP5, except for soil carbon and turnover time. Although both CMIP ensemble members project the ABoVE domain will remain a carbon sink by the end of the 21st century, the sink strength in CMIP6 increases with CO2 emissions. CMIP5 and CMIP6 ensembles indicate a tipping point defined here as a negative inflection point in the NBP curve by 2050–2080 independently of the shared socioeconomic pathway (SSP) for CMIP6 or representative concentration pathway (RCP) for CMIP5. The model ensembles therefore suggest that, if the carbon sink strength keeps declining throughout the 21st century, the Arctic-Boreal ecosystems in North America may become a carbon source over the next century.

Funder

NASA ABoVE program

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3