Abstract
Abstract
Estimating the impacts of climate change on the global carbon cycle relies on projections from Earth system models (ESMs). While ESMs currently project large warming in the high northern latitudes, the magnitude and sign of the future carbon balance of Arctic-Boreal ecosystems are highly uncertain. The new generation of increased complexity ESMs in the Intergovernmental Panel on Climate Change Sixth Assessment Report (IPCC AR6) is intended to improve future climate projections. Here, we benchmark the Coupled Model Intercomparison Project (CMIP) 5 and 6 (8 CMIP5 members and 12 CMIP6 members) with the International Land Model Benchmarking (ILAMB) tool over the region of NASA’s Arctic-Boreal vulnerability experiment (ABoVE) in North America. We show that the projected average net biome production (NBP) in 2100 from CMIP6 is higher than that from CMIP5 in the ABoVE domain, despite the model spread being slightly narrower. Overall, CMIP6 shows better agreement with contemporary observed carbon cycle variables (photosynthesis, respiration, biomass) than CMIP5, except for soil carbon and turnover time. Although both CMIP ensemble members project the ABoVE domain will remain a carbon sink by the end of the 21st century, the sink strength in CMIP6 increases with CO2 emissions. CMIP5 and CMIP6 ensembles indicate a tipping point defined here as a negative inflection point in the NBP curve by 2050–2080 independently of the shared socioeconomic pathway (SSP) for CMIP6 or representative concentration pathway (RCP) for CMIP5. The model ensembles therefore suggest that, if the carbon sink strength keeps declining throughout the 21st century, the Arctic-Boreal ecosystems in North America may become a carbon source over the next century.
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献