Climate exceeded human management as the dominant control of fire at the regional scale in California’s Sierra Nevada

Author:

Vachula Richard SORCID,Russell James M,Huang Yongsong

Abstract

Abstract The societal impacts of recent, severe fires in California highlight the need to understand the long-term effectiveness of human fire management. The relative influences of local management and climate at centennial timescales are controversial and poorly understood. This is the case in California’s Sierra Nevada, an actively managed area with a rich history of Native American fire use. We analyzed charcoal preserved in lake sediments from Yosemite National Park and spanning the last 1400 years to reconstruct local and regional area burned. Warm and dry climates promoted burning at both local and regional scales. However, at local scales fire management by Native Americans before 850 and between ca. 1350 and 1600 CE and, subsequently, Yosemite park managers from ca. 1900 to 1970 CE, decoupled fire extent dictated by regional climate scenarios. Climate acts as a top-down, broader scale control of fire, but human management serves a bottom-up, local control. Regional area burned peaked during the Medieval Climate Anomaly and declined during the last millennium, as climate became cooler and wetter and Native American burning declined. This trend was accentuated by 20th century fire suppression policies, which led to a minimum in burned area relative to the last 1400 years. In light of projected anthropogenic greenhouse gas emissions and predicted climate changes in California, our data indicate that although active management can mitigate local fire activity, broader regional burning may become more spatially extensive than has been observed in the last century.

Funder

Institute at Brown for Environment and Society

National Park Service Shared Beringia Heritage program

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3