Characteristics of human thermal stress in South Asia during 1981–2019

Author:

Ullah Safi,You QinglongORCID,Wang Guojie,Ullah WaheedORCID,Sachindra D AORCID,Yan Yechao,Bhatti Asher Samuel,Abbas Adnan,Jan Mushtaq Ahmad

Abstract

Abstract Climate change has significantly increased the frequency and intensity of human thermal stress, with relatively more severe impacts than those of pure temperature extremes. Despite its major threats to public health, limited studies have assessed spatiotemporal changes in human thermal stress in densely populated regions, like South Asia (SAS). The present study assessed spatiotemporal changes in human thermal stress characteristics in SAS, based on daily minimum, maximum, and mean Universal Thermal Climate Indices (i.e. UTCImin, UTCImax, and UTCImean) using the newly developed high-spatial-resolution database of the thermal-stress Indices over South and East Asia for the period 1981–2019. This study is the first of its kind to assess spatiotemporal changes in UTCI indices over the whole of SAS. The study also carried out extreme events analysis of the UTCI indices and explored their nexus with El Niño-Southern Oscillation (ENSO) index. Results revealed a significant increase in heat stress in SAS, with the highest human thermal stress in western Afghanistan, the Indo-Gangetic Plain, and southeastern, and central parts. The extreme event analysis showed that the study region is likely to observe more frequent and intense heat extremes in the coming decades. The correlation of UTCI indices with ENSO exhibited a robust positive coherence in southeastern and central India, southern Pakistan, and northwestern Afghanistan. The findings of the study are critical in understanding human thermal stress and adopting effective risk reduction strategies against heat extremes in SAS. To better understand the dynamic mechanism of thermal extremes, the study recommends a detailed investigation of the underlying drivers of UTCI variability in SAS.

Funder

Research Fund for International Young Scientists of the National Natural

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3