Abstract
Abstract
The area of Arctic winter sea ice growth (WSIG) has expanded dramatically since winter 2008. Yet the thermodynamic and dynamic contributions to the abrupt increase in WSIG remain unclear. Here using an ice concentration budget, we characterized quantitatively the increasing WSIG and revealed the relative contributions of dynamics during 1985–2021. Ice dynamics related to ice convergence/divergence are compared in two representative regions. The northern Laptev Sea is a freezing-dominated ice growth region and is competitively driven by the ice convergence. While in northwest Beaufort Gyre (BG), the combined effects of freezing and ice divergence have both enhanced since 2008, and the dynamics contribute 84% to the significant WSIG intensification since 2008. Comparison of thermodynamic and dynamic contributions emphasized that the winter sea-ice expansion is influenced not only by winter freeze, but also by convergence/divergence relative to newly formed thinner and mobile ice. Furthermore, the amplified summer Beaufort High in the mid-2000s and its long-lasting memory of the wind-driven strengthened BG are partially attributed to the abrupt increased WSIG since 2008.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Research Council of Norway funded project
Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory
Natural Science Foundation of Guangdong Province
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献