What goes in must come out: the oceanic outgassing of anthropogenic carbon

Author:

Couespel DamienORCID,Tjiputra Jerry

Abstract

Abstract About 25% of the emitted anthropogenic CO2 is absorbed by the ocean and transported to the interior through key gateways, such as the Southern Ocean or the North Atlantic. Over the next few centuries, anthropogenic CO2 is then redistributed by ocean circulation and stored mostly in the upper layers of the subtropical gyres. Because of the combined effects of (i) weakening buffering capacity, (ii) warming-induced lower solubility, (iii) changes in wind stress and (iv) changes in ocean circulation, there is a high confidence that the ocean sink will weaken in the future. Here, we use IPCC-class Earth System Model (ESM) simulations following the SSP1-2.6 and SSP5-8.5 climate change scenarios extended to the year 2300 to reveal that anthropogenic CO2 begins to outgas in the subtropical gyres of both hemispheres during the summer months of the 21st century. In 2100, about 53% of the surface ocean experience outgassing at least one month in a year in SSP1-2.6, against 37% in SSP5-8.5. After 2100, this fraction keeps increasing, reaching 63% by 2300 in SSP5-8.5 while stabilizing at 55% in SSP1-2.6. This outgassing pattern is driven by the rapid increase in oceanic pCO2, faster than the atmospheric pCO2, due to the combined effect of both rapid warming and long-term accumulation of anthropogenic carbon in these regions. These findings call for increased observation efforts in these areas, particularly in the subtropical gyres of the Southern Hemisphere, in order to detect future release of anthropogenic carbon and accurately constrain the future carbon budget.

Funder

HORIZON EUROPE European Research Council

Norges Forskningsråd

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3