A human exposure-based traffic assignment model for minimizing fine particulate matter (PM2.5) intake from on-road vehicle emissions

Author:

Bin Thaneya AhmadORCID,S Apte JoshuaORCID,Horvath ArpadORCID

Abstract

Abstract An exposure-based traffic assignment (TA) model and accompanying analysis framework have been developed to quantify primary and secondary fine particulate matter (PM2.5) exposure due to modeled on-road vehicle flow on a regional network at a high spatial resolution. The Chicago Metropolitan Area transportation network is used to demonstrate the model’s decision-informing power. The study compares the spatially distributed exposure impacts due to traffic emissions of two TA optimization scenarios: a baseline user equilibrium with respect to travel time (UET) and a novel system optimal with respect to pollutant intake (SOI). The UET and SOI scenarios are developed through the use of (a) the TA model used for obtaining vehicle flow patterns and characteristics including emissions, (b) a source-receptor matrix for PM2.5 developed through a reduced-complexity air quality model to quantify primary and secondary PM2.5 concentrations across the exposure domain, (c) spatial analysis for assessing exposure profiles at the census tract level, and (d) a health impact model to quantify exposure damages. The SOI scenario yields a 9% – 10% total reduction in exposure damages, with the most impacted census tracts benefiting from up to 20% – 30% of reductions, but leads to a 16% increase in travel time costs. Further reduction to PM2.5 exposure by the SOI is hindered by network constraints, where travel demand in populous areas around the network must still be satisfied. The model can be used to systematically quantify the mitigation potential of different transportation exposure reduction strategies, to assess the exposure impacts of newly developed transportation infrastructure, and to address the equity implications of PM2.5 exposure from traffic, all under realistic system behavior and bounded by actual system constraints.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference37 articles.

1. Mobile source emission inventory—EMFAC2021 database,2021

2. A tool to prioritize sources for reducing high PM2.5 exposures in environmental justice communities in California;Apte,2019

3. Addressing global mortality from ambient PM2.5;Apte;Environ. Sci. Technol.,2015

4. Studies in the economics of transportation;Beckmann,1956

5. Peer reviewed: defining intake fraction;Bennett;Environ. Sci. Technol.,2002

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3