Diesel passenger vehicle shares influenced COVID-19 changes in urban nitrogen dioxide pollution

Author:

Kerr Gaige HunterORCID,Goldberg Daniel LORCID,Emma Knowland KORCID,Keller Christoph AORCID,Oladini Dolly,Kheirbek Iyad,Mahoney Lucy,Lu ZifengORCID,Anenberg Susan CORCID

Abstract

Abstract Diesel-powered vehicles emit several times more nitrogen oxides than comparable gasoline-powered vehicles, leading to ambient nitrogen dioxide (NO2) pollution and adverse health impacts. The COVID-19 pandemic and ensuing changes in emissions provide a natural experiment to test whether NO2 reductions have been starker in regions of Europe with larger diesel passenger vehicle shares. Here we use a semi-empirical approach that combines in-situ NO2 observations from urban areas and an atmospheric composition model within a machine learning algorithm to estimate business-as-usual NO2 during the first wave of the COVID-19 pandemic in 2020. These estimates account for the moderating influences of meteorology, chemistry, and traffic. Comparing the observed NO2 concentrations against business-as-usual estimates indicates that diesel passenger vehicle shares played a major role in the magnitude of NO2 reductions. European cities with the five largest shares of diesel passenger vehicles experienced NO2 reductions 2.5 times larger than cities with the five smallest diesel shares. Extending our methods to a cohort of non-European cities reveals that NO2 reductions in these cities were generally smaller than reductions in European cities, which was expected given their small diesel shares. We identify potential factors such as the deterioration of engine controls associated with older diesel vehicles to explain spread in the relationship between cities’ shares of diesel vehicles and changes in NO2 during the pandemic. Our results provide a glimpse of potential NO2 reductions that could accompany future deliberate efforts to phase out or remove passenger vehicles from cities.

Funder

National Aeronautics and Space Administration

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3