Abstract
Abstract
We investigate the influence of external forcings on the frequency of temperature extremes over land at the global and continental scales by comparing HadEX3 observations and simulations from the Coupled Model Intercomparison Programme Phase 6 (CMIP6) project. We consider four metrics including warm days and nights (TX90p and TN90p) and cold days and nights (TX10p and TN10p). The observational dataset during 1951–2018 shows continued increases in the warm days and nights and decreases in the cold days and nights in most land areas in the years after 2010. The area of the so-called ‘warming hole’ in North America is much reduced in 1951–2018 compared with that in 1951–2010. The comparison between observation and simulations based on an optimal fingerprinting method shows that the anthropogenic forcing, dominated by greenhouse gases, plays the most important role in the changes of the frequency indices. Changes in CMIP6 multi-model mean response to all forcing need to be scaled down to best match the observations, indicating that the multi-model ensemble mean may have overestimated the observed changes. Analyses that involve signals from anthropogenic and natural external forcings confirm that the anthropogenic signal can be detected over global land as a whole and for most continents in all temperature indices. Analyses that include signals from greenhouse gas (GHG), anthropogenic aerosol (AA) and natural external (NAT) forcings show that the GHG signal is detected in all indices over the globe and most continents while the AA signal can be detected mainly in the warm extremes but not the cold extremes over the globe and most continents. The effect of NAT is negligible in most land areas. GHG’s warming effect is offset partially by AA’s cooling effect. The combined effects from both explain most of the observed changes over the globe and continents.
Funder
National Natural Science Foundation of China
Climate Change project
National Key R&D Program of China
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献