Negative ozone anomalies at a high mountain site in northern Italy during 2020: a possible role of COVID-19 lockdowns?

Author:

Cristofanelli PaoloORCID,Arduni JgorORCID,Serva FedericoORCID,Calzolari FrancescopieroORCID,Bonasoni PaoloORCID,Busetto MaurizioORCID,Maione MichelaORCID,Sprenger MichaelORCID,Trisolino PamelaORCID,Putero DavideORCID

Abstract

Abstract Several studies investigated the possible impacts of the restriction measures related to the containment of the spread of the COrona VIrus Disease (COVID-19) to atmospheric ozone (O3) at global, regional, and local scales during 2020. O3 is a secondary pollutant with adverse effects on population health and ecosystems and with negative impacts on climate, acting as greenhouse gas. Most of these studies focused on spring 2020 (i.e. March–May) and on observations in the planetary boundary layer (PBL), mostly in the vicinity of urban agglomerates. Here, we analyzed the variability of O3 above the PBL of northern Italy in 2020 by using continuous observations carried out at a high mountain WMO/GAW global station in Italy (Mt. Cimone–CMN; 44°12′ N, 10°42′ E, 2165 m a.s.l.). Low O3 monthly anomalies were observed during spring (MAM) and summer (JJA), when periods of low O3 intertwined with periods with higher O3, within climatological ranges. A similar variability was observed for O3 precursors like NO2 and 15 anthropogenic non-methane volatile organic carbons, but the systematic O3 anomalies were not reflected in these variables. The analysis of meteorological variables and diel O3 cycles did not suggest major changes in the vertical transport related to the thermal circulation system in the mountain area. The analysis of five days back-trajectories suggested that the observed O3 anomalies cannot be explained by differences in the synoptic-scale circulation with respect to the previous years alone. On the other hand, the characterization of two transport patterns (i.e. air masses from the regional PBL or from the free troposphere) and the analysis of back-trajectories suggested an important contribution of transport from the continental PBL during the periods with the lowest O3 at CMN. When proxies of air mass transport from the regional PBL are considered, a lower NO x content was pointed out with respect to the previous years, suggesting a lower O3 production in a NO x -limited atmosphere. Our study suggested for the first time that, during MAM and JJA 2020, the reduced anthropogenic emissions related to the COVID-19 restrictions lowered the amount of this short-lived climate forcer/pollutant at remote locations above the PBL over northern Italy. This work suggests the importance of limiting anthropogenic precursor emissions for decreasing the O3 amount at remote locations and in upper atmospheric layers.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

H2020 Environment

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3