Boreal tree-rings are influenced by temperature up to two years prior to their formation: a trade-off between growth and reproduction?

Author:

Tumajer JanORCID,Lehejček Jiří

Abstract

Abstract Large spatial and between-tree variability has recently been observed in the response of boreal forests to ongoing climate change, spanning from growth stimulation by increasing temperatures to drought limitation. To predict future responses of boreal forests, it is necessary to disentangle the drivers modulating the temperature-growth interaction. To address this issue, we established two inventory plots (at a treeline and closed-canopy forest) and assembled site chronologies in Picea glauca stands at the transition between boreal forest and tundra in Northern Quebec, Canada. In addition to site chronologies, we established a set of chronologies containing, for each year, exclusive subsets of tree-rings with specific cambial age (young/old), tree dimensions (small/large) and tree social status (dominant/suppressed). All chronologies were correlated with climatic data to identify the course of climatic conditions driving variability in tree-ring widths. Our results show that the growth of P. glauca correlates significantly with summer temperature in tree-ring formation years and during up to two prior summers. Tree-ring width is positively influenced by summer temperatures in tree-ring formation year and two years prior to tree-ring formation. In addition, climate-growth correlations indicate a negative effect of summer temperature one year before tree-ring formation at the closed-canopy forest site. The pattern of climate-growth correlations is tightly synchronized with previously published patterns of climate-reproduction correlations of P. glauca, suggesting a growth-reproduction trade-off as a possible factor modulating the response of boreal forests to summer temperatures. Climatic signal does not differ between pairs of chronologies based on subsets of cambial ages, stem dimensions or tree competition status at the treeline site. However, the response to summer temperatures one year before tree-ring formation is significant only in mature (old, large and dominant) individuals at the closed-canopy site. The inverse pattern of temperature-growth correlations during a sequence of three years challenges predictions of how boreal forests respond to climate change.

Funder

Horizon 2020 Framework Programme

Univerzita Karlova v Praze

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference65 articles.

1. Impacts of a warming arctic: arctic climate impact assessment,2004

2. Varying boreal forest response to Arctic environmental change at the Firth River, Alaska;Andreu-Hayles;Environ. Res. Lett.,2011

3. A simple pith locator for use with off-center increment cores;Applequist;J. For.,1958

4. Twentieth century redistribution in climatic drivers of global tree growth;Babst;Sci. Adv.,2019

5. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress;Barber;Nature,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3