Author:
Zhang Liangliang,Zhang Zhao,Tao Fulu,Luo Yuchuan,Cao Juan,Li Ziyue,Xie Ruizhi,Li Shaokun
Abstract
Abstract
Crop hybrid improvement is an efficient and environmental-friendly option to adapt to climate change and increase grain production. However, the adaptability of existing hybrids to a changing climate has not been systematically investigated. Therefore, little is known about the appropriate timing of hybrid adaptation. Here, using a novel hybrid model which coupled CERES-Maize with machine learning, we critically investigated the impacts of climate change on maize productivity with an ensemble of hybrid-specific estimations in China. We determined when and where current hybrids would become unviable and hybrid adaptation need be implemented, as well as which hybrid traits would be desirable. Climate change would have mostly negative impacts on maize productivity, and the magnitudes of yield reductions would highly depend on the growth cycle of the hybrids. Hybrid replacement could partially, but not completely, offset the yield loss caused by projected climate change. Without adaptation, approximately 53% of the cultivation areas would require hybrid renewal before 2050 under the RCP 4.5 and RCP 8.5 emission scenarios. The medium-maturing hybrids with a long grain-filling duration and a high light use efficiency would be promising, although the ideotypic traits could be different for a specific environment. The findings highlight the necessity and urgency of breeding climate resilient hybrids, providing policy-makers and crop breeders with the early signals of when, where and what hybrids will be required, which stimulate proactive investment to facilitate breeding. The proposed crop modelling approach is scalable, largely data-driven and can be used to tackle the longstanding problem of predicting hybrids’ future performance to accelerate development of new crop hybrids.
Funder
National Science Foundation of China
Science and Technology Innovation Project of Improving Food Yield and Efficiency
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献