Nutrient capture and sustainable yield maximized by a gear modification in artisanal fishing traps

Author:

Galligan SJ Bryan PORCID,McClanahan Timothy RORCID,Humphries Austin T

Abstract

Abstract Coral reef artisanal fisheries are an important source of nutrition and economic wellbeing for coastal communities, but their management is subject to conflicts and tradeoffs between short-term food security benefits and long-term ecological function. One potential tradeoff is between nutrient capture and fish yields, where targeting small, nutrient-dense species may be more valuable for food security than maximizing fish yields, which is more closely aligned with supporting biodiversity and ecological function. We explored these potential tradeoffs by comparing two similar gears: traditional African basket traps and traps modified with an escape gap. Traps without escape gaps captured a higher frequency of fish with body sizes below their estimated lengths at maximum sustainable yield than gated traps. Estimates of nutrient yields for six micronutrients among the 208 captured species indicated high hump-shaped relationships for gated traps and low and linear positive relationships for traditional traps. Maximum nutrients in gated traps frequently corresponded to body sizes at maximum sustainable yield. Daily capture rates of nutrients were above daily needs more often in gated than traditional traps, but calcium values were low in both trap designs. Gated traps were more likely to capture species with unique and potentially important functional traits, including browsing herbivores, which could have negative effects on ecological functions and reef recovery. However, gated traps also catch fewer immature fish and fewer predators. Our results indicate that nutrient yields can be maximized while using a gear that captures larger and more sustainable body sizes in coral reef artisanal fisheries. Preferential targeting of nutrient-dense fishes is only one of many metrics for evaluating a nutrition-centered management strategy and may only be a management target in specific contexts.

Funder

Bloomberg Family Foundation

United States Agency for International Development

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3