Ambient fine particulate matter and ozone pollution in China: synergy in anthropogenic emissions and atmospheric processes

Author:

Jiang Yueqi,Wang Shuxiao,Xing Jia,Zhao Bin,Li Shengyue,Chang Xing,Zhang Shuping,Dong Zhaoxin

Abstract

Abstract Since 2013, China has taken a series of actions to relieve serious PM2.5 pollution. As a result, the annual PM2.5 concentration decreased by more than 50% from 2013 to 2021. However, ozone pollution has become more pronounced, especially in the North China Plain. Here, we review the impacts of anthropogenic emissions, meteorology, and atmospheric processes on ambient PM2.5 loading and components and O3 pollution in China. The reported influence of interannual meteorological changes on PM2.5 and O3 pollution during 2013–2019 ranged from 10%–20% and 20%–40%, respectively. During the same period, the anthropogenic emissions of NO x , SO2, primary PM2.5, NMVOC and NH3 are estimated to decrease by 38%, 51%, 35%, 11% and 17%, respectively. Such emission reduction is the main cause for the decrease in PM2.5 concentration across China. However, the imbalanced reductions in various precursors also result in the variation in nitrate gas-particle partitioning and hence an increase in the nitrate fraction in PM2.5. The increase of ozone concentration and the enhancement of atmospheric oxidation capacity can also have substantial impact on the secondary components of PM2.5, which partly explained the growth of organic aerosols during haze events and the COVID-19 shutdown period. The uneven reduction in NO x and NMVOC is suggested to be the most important reason for the rapid O3 increase after 2013. In addition, the decrease in PM2.5 may also have affected O3 formation via radiation effects and heterogeneous reactions. Moreover, climate change is expected to influence both anthropogenic emissions and atmospheric processes. However, the extent and pathways of the PM2.5-O3 interplay and how it will be impacted by the changing emission and atmospheric conditions making the synergetic control of PM2.5 and O3 difficult. Further research on the interaction of PM2.5 and O3 is needed to provide basis for a scientifically-grounded and effective co-control strategy.

Funder

Samsung Advanced Institute of Technology

National Natural Science Foundation of China

Tencent Foundation

FRIEND project through National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3