Mitigation of non-CO2 greenhouse gases from Indian agriculture sector

Author:

Patange OmkarORCID,Purohit PallavORCID,Avashia VidheeORCID,Klimont Zbigniew,Garg Amit

Abstract

Abstract The Indian agriculture sector is driven by small and marginal farmers and employs two-thirds of the Indian work force. Agriculture also accounts for around a quarter of the total greenhouse gas emissions, mainly in the form of methane (CH4) and nitrous oxide (N2O). Hence, agriculture is an important sector for India’s transition to net-zero emissions and for the achievement of the sustainable development goals. So far, very few studies have assessed the future trajectories for CH4 and N2O emissions from the agriculture sector. Moreover, assessment of CH4 and N2O mitigation potential at a subnational (state) level is missing but is important owing to the regional diversity in India. To fill this gap, we focus on methane and nitrous oxide emissions from the agricultural activities using 23 sub-regions in India. We use the GAINS modelling framework which has been widely applied for assessing the mitigation strategies for non-CO2 emissions and multiple air pollutants at regional and global scales. We analyze a current policy and a sustainable agriculture scenario using different combinations of structural interventions and technological control measures to inform the Indian and global climate policy debates. Our results suggest that a combination of sustainable agricultural practices and maximum feasible control measures could reduce the CH4 and N2O emissions by about 6% and 19% by 2030 and 27% and 40% by 2050 when compared to the current policies scenario with limited technological interventions. At a sub-national level, highest mitigation potential is observed in Uttar Pradesh, followed by, Madhya Pradesh, Rajasthan, Gujarat, Maharashtra, Andhra Pradesh, and Telangana. The mitigation of agricultural CH4 and N2O also has co-benefits in terms of reduced local pollution, improved health, and livelihood opportunities for the local communities.

Funder

HORIZON EUROPE Climate, Energy and Mobility

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3