Weakened dust activity over China and Mongolia from 2001 to 2020 associated with climate change and land-use management

Author:

Wang ShushanORCID,Yu Yan,Zhang Xiao-Xiao,Lu Huayu,Zhang Xiao-Ye,Xu ZhiweiORCID

Abstract

Abstract Dust cycle is actively involved in the Earth’s climate and environmental systems. However, the spatiotemporal pattern and recent trend of dust emission from the drylands in East Asia remain unclear. By calculating dust aerosol optical depth (DOD) from the newly released moderate resolution imaging spectrometer aerosol products, we obtain a relatively long satellite-based time series of dust activity from 2001 to 2020 over China and Mongolia. We identify pronounced interannual variability of dust activity that is consistent with ground-based meteorological observations in the study area. A substantial reduction in spring dust activity in northern China is also found, which seems in accordance with the long-term weakening trend since the 1970s that has been attributed to the wind speed decline by previous studies. However, the spatial pattern of the trends in both annual mean and seasonal dust activity during the last 20 years is divergent, and the most significant dust diminishing is found over north-central China where large-scale vegetation restoration projects have been implemented. It indicates that in addition to the potential contribution of wind speed change, land-use change also plays an important role in the recent inhibition of dust emission. The current results show that dust activity occurs most intensively in spring, followed by summer and relatively weaker in autumn and winter. However, dust activity in autumn and winter has increased significantly in NW China despite the overall decreasing trend in other two seasons, probably associated with different seasonal atmospheric and land surface conditions. Finally, the DOD distribution reveals that the Tarim Basin, Gobi and Qaidam Basin Deserts are three major dust sources in East Asia. Compared to ground observations which are spatially limited and distributed unevenly, remote sensing provides an important complement, and it can serve as reference for identification of dust sources using other methods such as geochemical fingerprint and modeling.

Funder

West Light Foundation of the Chinese Academy of Sciences

Fundamental Research Funds for the Central Universities of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3