A new link between El Niño—Southern Oscillation and atmospheric electricity

Author:

Slyunyaev N NORCID,Ilin N VORCID,Mareev E AORCID,Price C GORCID

Abstract

Abstract The global electric circuit (GEC) is a unique atmospheric system driven by the global distribution of thunderstorms and electrified shower clouds. The GEC unites electric fields and currents in the entire atmosphere and is characterized by the permanent production and dissipation of huge amounts of electrical energy. In this study, aimed at investigating the links between the GEC and El Niño—Southern Oscillation (ENSO), the GEC variability during 2008–2018 is simulated on the basis of reanalysis meteorological data using the Weather Research and Forecasting model and a parameterization of the ionospheric potential (IP), which is a natural measure of the GEC intensity. Modelling shows that strong El Niño and La Niña events influence the global distribution of electrified clouds over the Earth’s surface, thereby consistently affecting the shape of the diurnal variation of the GEC. Further analysis shows that anomalies in the Niño 3.4 sea surface temperature, which characterize the ENSO phase, and anomalies in the relative IP are positively correlated at 9:00–15:00 UTC and negatively correlated at 18:00–23:00 UTC. This correspondence between ENSO and the GEC is most prominent at 13:00 UTC and 21:00 UTC, and most pronounced anomalies in the relative IP around these hours are precisely associated with strong El Niño and La Niña events. In particular, during strong El Niños the relative IP is larger than usual around 13:00 UTC and smaller than usual around 21:00 UTC, whereas during strong La Niñas it behaves oppositely.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Atmospheric electricity observations at Eskdalemuir Geophysical Observatory;History of Geo- and Space Sciences;2024-04-19

2. Russian Climate Research in 2019–2022;Izvestiya, Atmospheric and Oceanic Physics;2023-12

3. Russian Climate Research in 2019–2022;Известия Российской академии наук. Физика атмосферы и океана;2023-12-01

4. The DC and AC global electric circuits and climate;Earth-Science Reviews;2023-09

5. The effect of the Madden–Julian Oscillation on the global electric circuit;Atmospheric Research;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3