Natural decadal variability of global vegetation growth in relation to major decadal climate modes

Author:

Lu ZhengyaoORCID,Chen DeliangORCID,Wyser KlausORCID,Fuentes-Franco Ramón,Olin Stefan,Zhang Qiong,Wu MousongORCID,Ahlström AndersORCID

Abstract

Abstract The ongoing climate change can modulate the behavior of global vegetation and influence the terrestrial biosphere carbon sink. Past observation-based studies have mainly focused on the linear trend or interannual variability of the vegetation greenness, but could not explicitly deal with the effect of natural decadal variability due to the short length of observations. Here we put the variabilities revealed by remote sensing-based global leaf area index (LAI) from 1982 to 2015 into a long-term perspective with the help of ensemble Earth system model simulations of the historical period 1850–2014, with a focus on the low-frequency variability in the global LAI during the growing season. Robust decadal variability in the observed and modelled LAI was revealed across global terrestrial ecosystems, and it became stronger toward higher latitudes, accounting for over 50% of the total variability north of 40°N. The linkage of LAI decadal variability to major natural decadal climate modes, such as the El Niño–Southern Oscillation decadal variability (ENSO-d), the Pacific decadal oscillation (PDO), and the Atlantic multidecadal oscillation (AMO), was analyzed. ENSO-d affects LAI by altering precipitation over large parts of tropical land. The PDO exerts opposite impacts on LAI in the tropics and extra-tropics due to the compensation between the effects of temperature and growing season length. The AMO effects are mainly associated with anomalous precipitation in North America and Europe but are mixed with long-term climate change impacts due to the coincident phase shift of the AMO which also induces North Atlantic basin warming. Our results suggest that the natural decadal variability of LAI can be largely explained by these decadal climate modes (on average 20% of the variance, comparable to linear changes, and over 40% in some ecosystems) which also can be potentially important in inducing the greening of the Earth of the past decades.

Funder

Svenska Forskningsrådet Formas

Vetenskapsrådet

BECC

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3