Weather dataset choice introduces uncertainty to estimates of crop yield responses to climate variability and change

Author:

Parkes BORCID,Higginbottom T PORCID,Hufkens KORCID,Ceballos FORCID,Kramer BORCID,Foster TORCID

Abstract

Abstract Weather shocks, such as heatwaves, droughts, and excess rainfall, are a major cause of crop yield losses and food insecurity worldwide. Statistical or process-based crop models can be used to quantify how yields will respond to these events and future climate change. However, the accuracy of weather-yield relationships derived from crop models, whether statistical or process-based, is dependent on the quality of the underlying input data used to run these models. In this context, a major challenge in many developing countries is the lack of accessible and reliable meteorological datasets. Gridded weather datasets, derived from combinations of in situ gauges, remote sensing, and climate models, provide a solution to fill this gap, and have been widely used to evaluate climate impacts on agriculture in data-scarce regions worldwide. However, these reference datasets are also known to contain important biases and uncertainties. To date, there has been little research to assess how the choice of reference datasets influences projected sensitivity of crop yields to weather. We compare multiple freely available gridded datasets that provide daily weather data over the Indian sub-continent over the period 1983–2005, and explore their implications for estimates of yield responses to weather variability for key crops grown in the region (wheat and rice). Our results show that individual gridded weather datasets vary in their representation of historic spatial and temporal temperature and precipitation patterns across India. We show that these differences create large uncertainties in estimated crop yield responses and exposure to variability in growing season weather, which in turn, highlights the need for improved consideration of input data uncertainty in statistical studies that explore impacts of climate variability and change on agriculture.

Funder

Natural Environment Research Council

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3