The record-breaking 2022 long-lasting marine heatwaves in the East China Sea

Author:

Oh Hyoeun,Kim Go-Un,Chu Jung-Eun,Lee Keunjong,Jeong Jin-Yong

Abstract

Abstract In 2022, record-breaking long-lasting marine heatwaves (MHWs) occurred in the East China Sea (ECS), which persisted for 62 d during boreal summer. This exceeded the average MHWs duration of 10 d by a factor of 6. In addition, 2022 was also recorded as a year of many extreme events throughout Asia, such as summer floods in China and Pakistan, droughts and extreme heat in Europe, raising the question of whether they were caused by a ‘triple-dip’ La Niña, which has persisted since September 2020. Here we examine the key local and remote processes that led to the 2022 MHWs in the ECS using mixed-layer heat budget analysis. During the onset of the MHWs, a salinity-stratified shallow mixed-layer due to the large river discharge from the Yangtze–Huaihe River floods in June created favorable conditions for warm ocean temperature in the ECS. Simultaneously, an anomalous anticyclone maintained by the stationary Rossby wave, which is generated by vorticity forcings in mid-latitudes and thermal forcing in Pakistan, settled in the corresponding region and led to the long-lasting MHWs until Typhoon Hinnamnor began to dissipate the wave in early September. This study improves our understanding of the physical mechanism of flood-related MHWs that have increased with recent climate change.

Funder

the National Research Foundation of Korea (NRF) grant funded by the Korea government

Korea Institute of Marine Science & Technology Promotion(KIMST) funded by the Ministry of Oceans and Fisheries

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3