Anthropogenically forced increases in compound dry and hot events at the global and continental scales

Author:

Zhang Yu,Hao ZengchaoORCID,Zhang Xuan,Hao Fanghua

Abstract

Abstract Remarkable increases in compound dry and hot events (CDHEs) have been observed in different regions in recent decades. However, the anthropogenic influence on the long-term changes in CDHEs at the global scale has been largely unquantified. In this study, we provide evidence that anthropogenic forcings have contributed to the increased CDHEs over global land areas. We compare the spatial and temporal changes in CDHEs based on climate model simulations from Coupled Model Intercomparison Project Phase 6 and observations from different datasets. The results show observed occurrences of CDHEs have increased over most regions across global land areas during 1956–2010 relative to 1901–1955. In addition, we find a temporal increase in observed occurrences of CDHEs averaged over global land areas and different continents (except Antarctica) for the period 1901–2010 (with a larger increase during 1951–2010). The spatial and temporal changes in historical all-forcing simulations (with both anthropogenic and natural components) are overall consistent with observations, while those in historical natural-forcing simulations diverge substantially from observations, heightening the key role of anthropogenic forcings in increased CDHEs. Furthermore, we use the probability ratio (PR) to quantify the contribution of anthropogenic forcings to the likelihood of CDHEs since the mid-20th century (1951–2010). We find anthropogenic influences have increased the risk of CDHEs in large regions across the globe except for parts of Eurasia and North America. Overall, our study highlights the important role of anthropogenic influences in increased CDHEs from a global perspective. The mitigation of climate change is thus paramount to reduce the risk of CDHEs.

Funder

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3