Characterizing the performances of different observational precipitation products and their uncertainties over Africa

Author:

Ayugi Brian OdhiamboORCID,Chung Eun-SungORCID,Babaousmail HassenORCID,Lim Kam Sian Kenny Thiam ChoyORCID

Abstract

Abstract Validation of observed gridded precipitation datasets sourced from satellites or reanalysis over Africa remains a challenge due to the dearth of in-situ products that can act as a true estimate. To address this gap, this study compares the performance of different precipitation products (gauge, reanalysis, and satellite-based) sourced from the Frequent Rainfall Observations on GridS (FROGS) database over Africa. Satellite products are classified as corrected (incorporating gauge observations into their algorithms) or uncorrected, which implies that temporal variations depend entirely on the satellite. The main aim is to identify regions where precipitation products depict minimal uncertainties, supporting the use of the datasets in understanding precipitation variability in the specific regions. This is achieved by applying the triple collocation approach, which takes advantage of three collocated datasets of the same variable to derive the mean square error without requiring knowledge of the true value. The results show that light precipitation (1–5 mm d−1) was prevalent in most regions of Africa during the study duration (2001–2016). Estimating the spatial distribution of daily precipitation greater than the 90th percentiles suggests that extreme precipitation is mainly detected over the Central Africa region and coastal regions of West Africa, where the majority of uncorrected satellite products show consistent performance. The satellite product CMORPH_V1_RAW shows higher estimates of 90th percentile precipitation among the uncorrected satellite products. The ability of precipitation products to detect rainy or non-rainy days shows that corrected satellite products depict notable agreement for probability of detection and false alarm ratio over most regions of Africa. Overall, better performance is demonstrated by the IMERG products, ARCv2, CHIRPSv2 and PERSIANN_CDRv1r1 (corrected), and GPCC, CPC_v1.0 and REGEN_ALL (gauge) during the study period. Among the reanalysis products, ERA5 datasets shows good performance in estimating daily precipitation over Africa. The optimal maps that show the classification of products in regions where they depict reliable performance can be recommended for various usage by different stakeholders.

Funder

National Research Foundation of Korea

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3